Latest Publication in Expert Systems with Applications

21 Jul 2023

Our paper on “Epileptic multi-seizure type classification using electroencephalogram signals from the Temple University Hospital Seizure Corpus: A review” is now published in the Expert Systems with Applications.

Abstract: Epilepsy is one of the most paramount neurological diseases, affecting about 1% of the world’s population. Seizure detection and classification are difficult tasks and are ongoing challenges in biomedical signal processing to enhance medical diagnosis. This paper presents and highlights the unique frequency and amplitude information found within multiple seizure types, including their morphology’s, to aid the development of future seizure classification algorithms. Whilst many published works in the literature have reported on seizure detection using electroencephalogram (EEG), there has yet to be an exhaustive review detailing multi-seizure type classification using EEG. Therefore, this paper also includes a detailed review of multi-seizure type classification performance based on the Temple University Hospital Seizure Corpus (TUSZ) dataset for focal and generalised classification, and multi-seizure type classification. Deep learning techniques have a higher overall average performance for focal and generalised classification compared to machine learning techniques, whereas hybrid deep learning approaches have the highest overall average performance for multi-seizure type classification. Finally, this paper also highlights the limitations of the TUSZ dataset and suggests some future work, including the curation of a standardised training and testing dataset from the TUSZ that would allow a proper comparison of classification methods and spur advancement in the field.

The paper can be downloaded and read here.